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Multiple contact kernel for diffusionlike aggregation

A. Schmitt, G. Odriozola,* A. Moncho-Jorda´, J. Callejas-Ferna´ndez, R. Martı´nez-Garcı´a,
and R. Hidalgo-A´ lvarez†

Departamento de Fı´sica Aplicada, Universidad de Granada, Campus de Fuentenueva, E-18071 Granada, Spain
~Received 15 October 1999; revised manuscript received 9 June 2000!

The Brownian kernel is usually assumed to describe pure diffusion-limited cluster-aggregation processes. In
this work, we show that this assumption is correct for simulated data. For experimental data, however, sig-
nificant deviations were observed although the system was aggregated at an electrolyte concentration well
above the critical coagulation concentration. This indicates that residual cluster-cluster interactions are not
completely absent in real experimental systems. In order to improve the description of the experimental data,
we developed a kernel that considers a monomer-monomer sticking probability explicitly and accounts for the
possibility of multiple monomer-monomer contacts in the cluster collision area. The proposed kernel agrees
excellently with the experimental cluster-size distribution and the corresponding scaling function.

PACS number~s!: 82.70.Dd, 83.70.Hq, 61.43.Hv, 02.60.Cb
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I. INTRODUCTION

Diffusion-limited cluster aggregation is understood as
regime where the clusters diffuse by pure Brownian moti
and once two clusters collide, they always aggregate@1–3#.
This aggregation regime is usually described by the so-ca
Brownian kernel, which is deduced by solving Fick’s equ
tions for freely diffusing spherical particles. The obtain
aggregation rates depend on the particle cross section
diffusivity. Fractal concepts are then considered in orde
adapt the results obtained for spherical particles to
branched structure of real aggregates. It should be poi
out that the diffusion-limited cluster-aggregation regim
models the extremely idealized case in which no interacti
between separated particles exist. This means that inte
ticle interactions are allowed only for the bonds betwe
particles contained within a cluster. In real systems, ho
ever, it is very difficult, if not impossible, to eliminate th
interactions between distant clusters completely. Con
quently, the Brownian kernel is not expected to describe
experimental data precisely and at least small deviati
from the ideal diffusion-limited behavior should be o
served.

In this paper, we first confirm that the Brownian kern
describes pure diffusion-limited cluster aggregation c
rectly. For this sake, computer simulations were carried
since this is the only way to ensure that no residual inter
tions between clusters are present. Second, we fitted
Brownian kernel solution to experimental data obtained
the diffusion-limited cluster aggregation of polystyrene lat
particles by means of single cluster light scattering. As
pected, significant deviations between experimental and
oretical cluster-size distributions were found. Moreover,
experimental scaling distribution was not well defined in t
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case. In order to improve the theoretical description of
experimental data, we developed an aggregation kernel
is based on the Brownian kernel and accounts for the eff
of residual cluster-cluster interactions by introducing co
cepts derived from the reaction-limited cluster-aggregat
regime.

This paper is structured as follows. Section II is a the
retical background. The formulation of the proposed ker
is presented in Sec. III. In Sec. IV, we describe the mater
and methods used for obtaining the experimental and
simulated data. Section V tackles the results and a discus
thereof by comparing the Brownian and the proposed ke
solutions with the experimental and the simulated data.
nally, Sec. VI details the conclusions.

II. THEORETICAL BACKGROUND

Smoluchowski’s equation@4,5#

dNn

dt
5

1

2 (
i 1 j 5n

ki j NiNj2Nn (
i 51

`

kinNi ~1!

describes the time evolution of the cluster-size distributi
Nn(t), arising during aggregation of dilute systems. T
cluster size,n, is defined as the number of individual pa
ticles contained within a cluster andNn(t) as the number of
clusters of sizen. The aggregation kernel,ki j , quantifies the
rate at which two smaller clusters of sizei and j react and
form a cluster of sizei 1 j . ki j has to be understood as a
orientational and configurational average of the exact ag
gation rate for two clusters colliding under a specific orie
tation. All physical information about the aggregatio
mechanism is contained in the kernel.

A. Dynamic scaling

Van Dongen and Ernst introduced a classification sche
for homogeneous kernels@6# in terms of two exponents,l
andm, which are defined by the relationship
d-
8335 ©2000 The American Physical Society
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k(ai)(a j);alki j ~l<2!

~2!
ki j ; i m j n ~n<1!; i ! j ; l5m1n,

wherea is a positive constant. Kernels with eitherl.2 or
n.1 are unphysical, since the cluster reactivity cannot r
faster than its mass. No restrictions are imposed onm.

The homogeneity parameterl correlates the aggregatio
rate of two smaller clusters with the aggregation rate of t
bigger ones. Forl.0, the aggregation rate increases w
increasing cluster size and decreases forl,0. Thus,l con-
trols the overall time evolution of the aggregation process
For l<1, a cluster of infinite size is formed at infinite tim
Only for 1,l<2 is a gelling behavior observed, i.e., a
infinite size cluster is formed at finite time.

The exponentm controls the shape of the cluster-size d
tribution. For negativem, the big-cluster–small-cluster unio
is favored and large variations in cluster mass are disc
aged. In this case, the cluster-size distribution tends to
tightly bunched, like a bell-shaped curve. For non-nega
m, the union between big clusters is favored and the sm
clusters are left behind, so that the cluster-size distribut
Nn , decreases monotonically for increasing cluster size.

For large clusters and long aggregation times, the s
tions of Smoluchowski’s equation can be expressed in te
of a time-independent scaling distribution,F(x), as@7,8#

Nn~ t !;s2gF~n/s!, ~3!

wherex5n/s(t) can be interpreted as a normalized clus
size. For nongelling systems, mass conservation requireg
52 @8#. The time evolution of the cluster-size distribution
completely contained in the scaling function,s(t), which is
related to the number-average cluster-size,n̄n5( i 51

` iNi /
( i 51

` Ni , by

s~ t !;n̄n;t1/(12l) ~4!

for kernels withm,0. The functional form ofF(x) depends
on the exponentsl andm @8,9#.

For the constant kernel,ki j 5k115const, the scaling dis
tribution, F(x), is known in a closed analytical form an
given by

F~x!5w2e2wx, ~5!

wherew is a constant.

B. Aggregation kernels

It is generally accepted that pure diffusion-limited agg
gation of dilute systems may be described by the Brown
kernel. Its analytical form is given by

ki j 54p~Di1D j !~Ri1Rj !. ~6!

This kernel was derived by considering two solid sphe
that approach due to Brownian motion and form a bond
soon as they come into physical contact. The first term on
right-hand side accounts for the diffusive motion of t
spheres. Here,Di and D j are the diffusion coefficients o
spherei and j, respectively. The second term corresponds
e

o
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the combined collision cross section and is expressed
terms of the sphere radiiRi andRj .

The diffusion coefficient of a sphere is given by th
Stokes-Einstein relationship,Di5kBT/6phR, whereR is the
radius of the solid sphere,kBT is the thermal energy, andh
is the solvent viscosity. Substituting this expression in E
~6! yields

ki j 5
1

4
k11

Smol~Ri
211Rj

21!~Ri1Rj !, ~7!

wherek11
Smol58kT/3h is the dimer aggregation rate given b

Smoluchowski for pure diffusion-limited aggregation@4,5#.
In order to adapt the Brownian kernel for two collidin

fractal aggregates, an expression for their effective rad
and diffusion coefficient had to be found. Computer simu
tions @10–13# and experiments@14,15# indicated thatDi
5kBTi (21/dh)/6phR0 andRi5R0i (1/df ) are suitable assump
tions for colloidal aggregates. Here,R0 is the monomer ra-
dius,df is the fractal dimension, anddh is the hydrodynamic
fractal dimension. Using these expressions in Eq.~6! yields
finally

ki j 5
1
4 k11

Smol~ i (21/dh)1 j (21/dh)!~ i (1/df )1 j (1/df )!. ~8!

According to Eq.~2!, this kernel has

l51/df21/dh and m521/dh . ~9!

Aggregation kernels for reaction-limited cluster aggreg
tion, proposed in the literature, generally assume the follo
ing form:

ki j ;~ i j !s, ~10!

wheres is a constant that lies between 0 and 0.5. This ty
of kernel, however, does not explicitly account for the diff
sive motion and the geometrical cross section of the ag
gates.

Broide introduced the concept of sticking probability a
proposed the following kernel for slow aggregation@16#:

ki j ;~ i (21/dh)1 j (21/dh)!Pi j . ~11!

Here,Pi j contains the sticking probability for two colliding
clusters. He consideredPi j to be proportional to the numbe
of monomers contained within a shell of thicknessDR near
the surface of a cluster. He derived

D i;
di

dR
DR; i (df21)/df ~12!

from the relationshipRi5R0i (1/df ), valid for fractal struc-
tures. Physically,D i represents the number of ‘‘surfac
sites’’ available for bonding with other clusters. Assumin
Pi j ;D iD j , he obtained finally

ki j ;~ i (21/dh)1 j (21/dh)!~ i j !(df21)/df . ~13!

According to Eq. ~2!, this kernel hasl52(df21)/df
21/dh andm5(df21)/df21/dh .

The kernel given by Eq.~13! considers explicitly only two
effects, cluster diffusion and surface reactivity due to a li
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ited number of momeric particles contained within the clu
ter surface. It neglects the geometric cross section of
colliding clusters.

For reaction-limited cluster aggregation, the clusters d
fuse and collide just as in the diffusion-limited aggregati
regime. However, not every contact results in the format
of a bond. When bonds do form, they are, as in the diffusi
limited aggregation regime, permanent. So, there is no
son for not considering both the diffusive motion and t
cross section of the aggregates. In the next section, we
pose a kernel that considers these concepts explicitly.

III. PROPOSING A KERNEL FOR DIFFUSIONLIKE
AGGREGATION

The Brownian kernel describes pure diffusion-limited a
gregation as a two-step process, i.e., two clusters first
proach due to diffusive motion before they react and form
stable bond. Hereby, a physical contact must be establis
between at least one monomer of each cluster. Since
sticking probability for a single monomer-monomer conta
is unity, a stable bond between the clusters is formed in
pendently of the number of monomer-monomer contacts
may exist in the collision area.

For not purely diffusion-controlled aggregation, the clu
ters diffuse and collide just as in the diffusion-limited r
gime. However, not every monomer-monomer contact gi
rise to the formation of a bond. Now it becomes important
consider the number of monomer-monomer contacts oc
ring in the collision area. This may be achieved by introdu
ing an additional term,Q( i j ), in the Brownian kernel. Tak-
ing into account that the sticking probability for a monome
monomer collision,p11, should also be considered, th
kernel for not purely diffusion-controlled aggregation b
comes

ki j 5
1
4 k11

Smolp11~ i (1/df )1 j (1/df )!~ i (21/dh)1 j (21/dh)!Q~ i j !.
~14!

Here,Q( i j ) contains the influence of the average number
monomer-monomer contacts contained within the collis
region. The productp11Q( i j ) is the sticking probability for
two colliding clusters. Naturally, when purely diffusion
limited conditions are established,p11 and Q( i j ) become
unity since all contacts between clusters give rise to ag
gation and therefore the kernel converts into the Brown
kernel.

In order to obtain an analytical expression for theQ( i j )
term, we assume that it should be proportional to the num
of monomers per unit area contained within a shell of thi
nessDR near the surface of each colliding cluster. Cons
ering the fractal structure of the clusters, this number is gi
by

D i /area;
di

dR
DR/R2; i (df23)/df . ~15!

Hence,Q( i j ) may be expressed as

Q~ i j !5~D i /area!~D j /area!M ~ i j !5~ i j !(df23)/dfM ~ i j !,
~16!
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whereM ( i j ) is an unknown general function ofi and j.
M ( i j ) may be assessed by considering that there is a c

tinuous transition away from the diffusion-limited regime t
ward the reaction-limited aggregation regime. Consequen
Q( i j ) turns unity for purely diffusion-limited conditions
i.e.,

15Q~ i j !Brown5~ i j !(df D
23)/df DM ~ i j !, ~17!

wheredf D
is the fractal dimension for a system aggregati

under pure diffusion-limited conditions. Solving forM ( i j )
and substituting the result into Eq.~16! yields finally

Q~ i j !5~ i j !3(df2df D
)/dfdf D. ~18!

Hence, Eq.~14! becomes

ki j 5
k11

4
~ i (1/df )1 j (1/df )!~ i (21/dh)1 j (21/dh)!~ i j !3(df2df D

)/dfdf D,

~19!

wherek11 is k11
Smolp11. According to Eq.~2!, this kernel has

l56~df2df D
!/~dfdf D

!11/df21/dh ,

m53~df2df D
!/~dfdf D

!21/dh . ~20!

IV. MATERIALS AND METHODS

Two different techniques were employed for obtaini
diffusion-limited aggregation data. On the one hand, co
puter simulations were carried out. On the other hand, ag
gation of polystyrene microspheres was monitored by me
of single-cluster light scattering. Afterwards, the obtain
data were fitted by the numerical solutions of Smolucho
ski’s rate equation for the Brownian, the constant, and
proposed kernel. The following subsection describes
simulation process. The next subsection details the m
characteristics of the experimental system as well as the
erational principle of the single-cluster light-scattering tec
nique. Finally, the numerical procedure to solve Smo
chowski’s rate equations and the fitting criteria a
summarized.

A. Simulation

The simulations were carried out by placing randomlyN0
identical particles inside a three-dimensional square box.
only imposed restriction was to avoid particle overlappin
The movement of the different aggregates was carried ou
the following way.

~i! The monomeric particles are always moved a fix
distancel 0 in a random direction.

~ii ! The i size clusters (i .1) are moved the same distanc
l 0 in a random direction when a generated random numbj
uniformly distributed in@0,1# is less than the ratio betwee
the diffusion coefficients of thei size cluster,Di , and the
monomer,Dm , i.e. for j,Di /Dm .

~iii ! The ratio Di /Dm is calculated assuming thatDi
; i 21/df and so,Di /Dm5 i 21/df .

~iv! The time step is calculated ast5 l 0
2/6Dm whereDm

5kBT/6phRm is the Stokes Einstein translational diffusio
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8338 PRE 62A. SCHMITT et al.
coefficient for a monomer. Here,h is the solvent viscosity,
kBT is the thermal energy andRm is the monomer radius
@17#.

A collision is considered to occur when a moved clus
overlaps with another one. Since diffusion-limited cluster a
gregation is simulated, every collision leads to the format
of a stable bond. The position of the moved cluster is c
rected backwards in the direction of the movement so
only the cluster surfaces remain connected. The new clu
continues the movement in the next step. The simulations
off-lattice. Periodic boundary conditions are considered.

B. Experiment

The experimental cluster-size distributions were obtain
from aqueous suspensions of polystyrene microspheres
were aggregated at high electrolyte concentration. The p
styrene particles were manufactured at the laboratorie
Granada University. Transmission electron microsco
~TEM! was used to check the particle size and shape.
obtained average particle diameter and polydispersity in
were (63864) nm and 1.004, respectively. Sulfate grou
derived from the initiator molecules for the polymerizatio
reaction stabilize the particles by charge. The particle surf
charge density was determined by conductimetric titrat
obtaining (25462) mC/m2. The critical coagulation con
centration of (18067) mM was measured by small-ang
nephelometry.

The single-cluster light-scattering instrument used for t
study is basically a counter and classifier of clusters. It
lows the cluster-size distribution up to heptamers and
total concentration of clusters to be measured during a
duced time interval. So, the time evolution of the cluster-s
distribution and the number-average cluster size,n̄n , can be
obtained by measuring at different stages of the aggrega
process. Its principle of operation is based on hydrodyna
focusing of the aggregating sample so that the clusters
forced to flow one by one across a focused laser beam
they pass, they scatter a pulse of light that is detecte
small scattering angle. Under these conditions, the li
pulse intensity is directly related to the cluster size and the
fore the cluster-size distribution can be obtained by sim
counting the pulses as a function of their intensity. Furt
details of the experimental technique can be found elsew
@18,19#.

Prior to the experiments, the samples were diluted
twice the desired particle concentration and sonicated fo
min in order to approach monomeric initial conditions. Im
mediately afterwards, the coagulation process was starte
mixing equal volumes of sample and electrolyte solut
with a Y-shaped mixing cell. The initial particle concentr
tion was set to 8.031013 m23 in order to guarantee th
proper detection of individual aggregates. The electrol
concentration was 1.0 M potassium bromide~KBr!. The tem-
perature was stabilized at (2161) °C. Pure water was ob
tained by reverse osmosis followed by percolation throu
charcoal and a mixed bed of ion-exchange resins. The in
cluster-size distribution was measured for a stab
electrolyte-free sample. The fraction of particles associa
in doublets was less than 0.3% in the initial suspens
Larger aggregates were not detected.
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C. Solving Smoluchowski’s rate equation

The method described in Ref.@20# was used for solving
Smoluchowski’s rate equation. It is based on a second-o
Runge-Kutta algorithm that solves a limited number
coupled first-order differential equations for a given kern
and initial size distribution. The influence of larger clusters
neglected during the first iteration run. For the followin
steps, their influence is considered by introducing dynam
scaling concepts. This method presents not only a high
gree of precision but is also a fast way to obtain the ti
evolution of the cluster-size distribution numerically. Th
experimental data were fitted by minimizing ad function
defined as

d5A 1

2IJ
F (

j 51

J

(
i 51

I

j j i
2 1J(

i 51

I

j n̄ni
2 G , ~21!

wherej j i is the relative deviation between the experimen
point i of curve j and the corresponding numerical solutio
j n̄ni is defined accordingly for the time evolution of th
number-average cluster size,n̄n . I is the total number of
experimental points andJ is the total number of curves.d
expresses the square root of the mean quadratic relative
viation. Please note that the number-average cluster-
curve is included in thed function and weightedJ times in
order to consider also the contribution of larger aggregat

In order to simplify the fitting procedure, the followin
assumptions were adopted.

~i! Since computer simulations as well as experimen
evidence indicate that the fractal dimension,df , and the hy-
drodynamic fractal dimension,dh , are approximately equal
df anddh were considered to be identical@21,22#.

~ii ! The fractal dimension,df D
, for pure diffusion-limited

aggregation is assumed to be (1.7560.05). As will be dis-
cussed later, this value is widely accepted in the literature
is in no way a general result@11,13,23,24#.

This leaves onlyk11 anddf as fitting parameters for both
the Brownian and the proposed kernel@see Eqs.~8! and
~19!#. For the computer-generated cluster-size distributi
however, interparticle interactions are completely absent
thereforek11 must bek11

Smol. Consequently, onlydf is left as
a free fitting parameter for the simulated data.

V. RESULTS AND DISCUSSION

In this section, the numerical algorithm for solvin
Smoluchowski’s rate equation will be used to fit the obtain
simulated and experimental data. It will be shown that
Brownian kernel is in excellent agreement with the simula
diffusion-limited aggregation data but it is not capable
fitting the experimental data satisfactorily. Afterwards, t
proposed kernel is fitted to the experimental data and a
comparison with the numerical solutions for different agg
gation kernels is made.

A. Simulation

In order to obtain reliable statistics, the simulations we
carried out with an initial numberN0530 000 monomeric
particles. The ratio between the total particle volume and
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box volume was 531024. A simulation step length ofl 0
50.4 times the particle radius was established. In orde
calculate the simulation time step, the monomer diame
was chosen as 630 nm, just as for the experiments. For
same sake, the solvent viscosity and the thermal energy w
evaluated at 21 °C. The cluster-size distribution, obtain
under these conditions, is plotted in Fig. 1 in a doub
logarithmic scale. As can be observed, the monomer num
decreases monotonously since the individual particles di
pear as they react and form bigger aggregates. The curve
all larger aggregates exhibit a maximum as they must firs
formed before they can react. For long aggregation times,
curves for smaller aggregates cross the curves for the bi
ones. This behavior is typical for diffusion-limited aggreg
tion. The solid lines in Fig. 1 correspond to the fitted nume
cal solution for the Brownian kernel. The fitting procedu
was performed by considering 16 curves (J516) and a total
number of 235 data points per curve (I 5235). The best fit
was obtained fordf5(1.7360.09). The fitting error was es
timated assuming a 5% confidence interval for thed func-
tion. As can be seen, the agreement between the simu
data and the given solutions for the Brownian kernel is
cellent.

In order to corroborate the fitted value for the cluster fra
tal dimension, we calculated this parameter also from
structure of the simulated clusters by the radius of gyrat
method described in Ref.@25#. The obtained value,df
5(1.7260.03), is in good agreement with the fractal dime
sion calculated from the kinetic data and with those repor
in the literature.

Figure 2 shows the dynamic scaling distribution,F(x),
calculated for monomers up to 200-mers. The data po
correspond to the simulated data. The solid lines repre
the numerical solution obtained for the Brownian kernel
can clearly be seen that the simulated data points defin
single master curve that is well described by the numer
solution. It should be pointed out that even the smaller cl
ters exhibit dynamic scaling behavior at relatively sh
times. This is quite surprising since the scaling theory
strictly valid only for large clusters at long times. A simila

FIG. 1. Time evolution of the cluster concentrations represen
in a double-logarithmic scale. The points correspond to
computer-simulated data for monomers up to 200-mers groupe
logarithmically spaced intervals as indicated in the plot. The so
lines represent the fitted numerical solution for the Brownian k
nel.
to
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behavior was already reported in the literature@18,26#. As
expected, both the numerical and the simulated dyna
scaling distributions show a bell-shaped form that peaks
approximatelyx50.1. This is in good agreement with th
results obtained by Broide and Cohen@9# and Thorn and
Seesselberg@27#.

B. Experimental data

In order to obtain experimental data for diffusion-limite
colloidal aggregation, a freshly prepared particle suspens
was aggregated at 1.0 M potassium bromide~KBr!. The elec-
trolyte concentration was chosen well above the critical
agulation concentration so that the sample can safely be
sumed to aggregate in the fastest possible aggrega
regime.

Figure 3 shows the time evolution of the cluster-size d
tribution for monomers up to heptamers in a doub
logarithmic scale. As for the simulations, the monomer co
centration decreases monotonously while the curves for
larger aggregates exhibit a maximum. For longer times,
monomer curve also seems to cross the curves of the bi
aggregates. The experimentally obtained time evolution
the number-average cluster size,n̄n , is plotted in Fig. 4 in a
double-logarithmic scale.

1. Fitting the Brownian kernel

We first fitted the Brownian kernel solution for a clust
fractal dimension ofdf51.75. Figure 5 shows the squa
root of the mean quadratic relative deviation,d, defined by
Eq. ~21!, as a function of the fitting parameterk11. The cal-
culations were performed for aggregates up to heptam
(J57) and a total number of 67 data points per curveI
567). As can be seen, a well-defined minimum is reach
for k11

Brown5(7.060.3) 10218 m3 s21. The corresponding
numerically calculated cluster-size distribution is plotted
gether with the experimental data in Fig. 3~a!. A relatively
good agreement between the fitted curves and the exp
mental data is observed. The experimental data for the
nomeric particles, however, differ quite significantly fro
the fitted solution. Furthermore, a slight positive deviati

d
e
in
d
-

FIG. 2. Simulated dynamic scaling distribution,F(x), for
monomers up to 200-mers. The points correspond to the simul
data. The solid line shows the numerically obtained scaling dis
bution for the Brownian kernel.



sh
lu
o
th
at

e
-
m
e

a
as
th
.
ti

th

ca

el
te

o-
ves
is-
-

tion

x-
the

von

dy-
ion

ow
nu-

ng

ro-
the

nel,

,

The

i
l
t

8340 PRE 62A. SCHMITT et al.
can also be perceived for the larger cluster sizes. The da
line in Fig. 4 shows the numerically calculated time evo
tion of the number-average cluster size. Here, it can be
served that the numerical solution is unable to fit either
short- or the long-time behavior of the experimental d
correctly.

In order to improve the fit, we varied also the clust
fractal dimensiondf . We found, however, that the differ
ences between the fitted and the experimental curves di
ish slightly for increasingdf so that the best fit would hav
been obtained only for the limiting case ofdf →`. Although
fractal dimensions higher than the dimension of space
nonphysical, it is interesting to discuss this pathological c
in more detail since the Brownian kernel converts into
constant kernel asdf tends to infinity. For this purpose, Fig
5 shows also the square root of the mean quadratic rela
deviationd for the constant kernel. As can be seen, thed
function reaches a deeper minimum than in the case of
Brownian kernel withdf51.75. Now, the best fit for the
dimer formation rate constant becomesk11

const5(8.060.3)
310218 m3 s21. Nevertheless, the corresponding numeri
solutions are not very different from the previous fit~see
Figs. 3 and 4!. This makes it clear that the Brownian kern
solutions are almost unaffected by variations in the clus

FIG. 3. Time evolution of the concentration of (h) monomers,
(s) dimers, (n) trimers, (,) tetramers, (L) pentamers, (1) hex-
amers, and (3) heptamers represented in a double-logarithm
scale. The solid lines in~a! and ~b! represent the fitted numerica
solutions for the Brownian kernel havingdf51.75 and the constan
kernel, respectively.
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fractal dimension,df . The main difference between both s
lutions is that the crossing of the different cluster-size cur
is only observed for the Brownian kernel solutions. The d
crepancies between the obtainedk11 values can be under
stood in terms of the kernel shape~see Ref.@20#!. Notwith-
standing, both values agree with the average dimer forma
rate,^k11&5(663)310218 m3 s21, determined by Sonntag
and Strenge for diffusion-limited cluster aggregation@3#.
Their value was calculated by compiling a large set of e
perimental measurements. It should be pointed out that
experimental values obtained fork11 under diffusion-limited
conditions are substantially smaller than the theoretical
Smoluchowski valuek11

Smol511.1310218 m3 s21 for 21 °C.
This discrepancy is generally explained in terms of hydro
namic interactions, which typically reduce the aggregat
rate by a factor of 2@28–30#.

Figure 6 shows the dynamic scaling distribution,F(x),
calculated for monomers up to heptamers. The points sh
the experimental data. The solid line corresponds to the
merical solution obtained for the Brownian kernel havi

FIG. 4. Time evolution of the number-average cluster size,n̄n .
The solid line represents the fitted numerical solution for the p
posed kernel. The dashed and the dotted lines correspond to
fitted numerical solutions for the Brownian and the constant ker
respectively.

FIG. 5. Square root of the mean quadratic relative deviationd,
as a function of the fitting parameter,k11. The symbols (s), (h),
and (n) represent the data for the Brownian kernel havingdf

51.75, the constant, and the proposed kernel, respectively.
continuous lines are drawn as a guide to the eye.
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df51.75 @Fig. 6~a!# and the constant kernel@Fig. 6~b!#. For
large arguments,x, the experimental data points define
single master curve, which is well described by the num
cally obtained dynamic scaling distribution. For small arg
ments,x, the experimental data scatter in a cloud. Also
this region, the numerically calculated scaling distributio
fit the experimental data quite well. As expected, the m
notonously decreasing shape of the numerically obtai
scaling function,F(x), for the constant kernel is perfectl
described by the theoretical expression~5!. This is why the
corresponding curve is not included in Fig. 6~b!. The numeri-
cally obtained dynamic scaling distribution for the Browni
kernel, however, shows the typical bell-shaped form.

2. Fitting the proposed kernel

As in the case of the constant and the Brownian kern
the square root of the mean quadratic relative deviationd,
was minimized for fitting the proposed kernel given by E
~19!. The best fit was obtained fork11

prop5(5.660.2)
310218 m3 s21 and df5(1.8760.03). Figure 5 shows the
correspondingd values as a function of the fitting paramet
k11. The fittedk11 value is also in good agreement with th
average value determined by Sonntag and Strenge.
d-function minimum is, however, substantially deeper th
the corresponding minima for the constant and the Brown

FIG. 6. Dynamic scaling distribution,F(x), calculated for
monomers up to heptamers. The points correspond to the ex
mental data. The solid lines correspond to the numerically obta
scaling distribution calculated for the Brownian kernel havingdf

51.75 ~a! and the constant kernel~b!.
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kernel. This means that the proposed kernel fits the exp
mental data significantly better. This can clearly be seen
Figs. 4 and 7, which show that the calculated time evolut
of the cluster-size distribution and the number-average c
ter size for this kernel are in excellent agreement with
experimental data. In this case, no significant deviations
observed.

It should be pointed out that the physical interpretation
the fitted value for the fractal dimension,df5(1.8760.03),
is not straightforward. First of all, the given error is dete
mined only as a fitting confidence interval. The propos
kernel depends, however, critically on the difference (df

2df D
) and so the experimental error ofdf D

must also be

considered. Taking into account that thedf D
values found in

the literature vary usually from 1.7 to 1.8, a better estimat
of df would bedf5(1.8760.09). On the other hand, it is
necessary to keep in mind that the fitteddf value was ob-
tained from kinetic data and not directly from structural me
surements, and therefore implicit assumptions such as
absence of internal cluster rearrangement or multifracta
were made. When these effects are present, fractal dim
sions even as high as 2.4 are reported for diffusion-limi
aggregation processes@26#. This makes it clear that the pre
sented fitting procedure should not be considered as a
independent way to determine the fractal dimension.

The dynamic scaling distribution,F(x), for the proposed
kernel is shown in Fig. 8. As for the constant and Browni
kernels, monomers up to heptamers were taken into acco
An excellent experimental scaling behavior for the compl
measuring interval is observed. The experimental data po
line up on the fitted curve almost perfectly. This means t
the experimental data scale much better for the propo
kernel. As in the case of the Brownian kernel, the nume
cally obtained dynamic scaling distribution is bell-shaped
peaks, however, at approximatelyx50.03. The agreemen
between the numerical and the experimental scaling distr
tion is excellent. As in the other cases, the numerical so
tions scale already during early stages of aggregation.

ri-
d

FIG. 7. Time evolution of the concentration of (h) monomers,
(s) dimers, (n) trimers, (,) tetramers, (L) pentamers, (1) hex-
amers, and (3) heptamers represented in a double-logarithm
scale. The solid lines represent the fitted numeric solutions for
proposed kernel.
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C. Discussion

The Brownian kernel was employed for fitting aggreg
tion data simulated in the absence of any interactions
tween distant clusters. Since an excellent agreement betw
the simulated data and the numerical solutions was obtai
the Brownian kernel can safely be assumed to be an exce
model for pure diffusion-limited cluster aggregation. Th
suggested, however, that the Brownian kernel may not
capable of describing real diffusion-limited aggregation d
where the effects of residual interactions between clus
may have to be considered. We confirmed this assump
by comparing the Brownian kernel solution with experime
tal data obtained for aqueous suspensions of polystyrene
ticles aggregating at high electrolyte concentration. Sign
cant deviations were observed not only for the time evolut
of the cluster-size distribution but also for the numb
average cluster size.

So, an alternative kernel had to be proposed that explic
accounts for the sticking probability and the possibility
multiple monomer-monomer contacts in the cluster collis
area. The improvement with respect to the Brownian a
constant kernel solutions were clearly shown not only by
excellent agreement between the experimental and num
cally calculated cluster-size distribution, but also by the b
ter defined experimental scaling function,F(x). Further-
more, the deeper minimum obtained for thed function
confirmed the improvement.

For the fitted monomer reaction rate constants, we
tainedk11

prop,k11
Brown,k11

const. This finding may be understoo
by comparing the shape of the corresponding kernel. Fig
9 shows the Brownian kernel as a function of the cluster s
in a three-dimensional plot. As can be seen, the main dia
nal has slope zero, which means that the corresponding
trix elements,ki 5 j , are constant. Moreover, all matrix ele
ments not too far from the main diagonal are also alm
constant. Only the matrix elements close to the axes h
significantly higher values. Figure 10 shows the propo
kernel in a similar plot. Although the shape of this kernel
not very different from the shape of the Brownian kernel
exhibits a main diagonal with a positive slope that is larg
for small cluster sizes. Consequently, the ratiok11/k22 for the

FIG. 8. Dynamic scaling distribution,F(x), obtained for mono-
mers up to heptamers. The points correspond to the experim
data. The solid line corresponds to the numerically obtained sca
distribution for the proposed kernel.
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proposed kernel is smaller than for the Brownian kernel. F
this reason, the solution for the proposed kernel yield
slower monomer reaction rate keeping similar values for b
ger aggregates. Similar arguments are valid for the comp
son of the constant kernel with the Brownian kernel@20#.

In the result section, it was also shown that the expe
mentally obtained dynamic scaling distribution is best d
fined for the proposed kernel. This is a consequence of
different l values for the corresponding kernels. For t
Brownian kernel, Eq.~9! yields l50 andm520.57. Con-
sidering the fitteddf value, l50.22 andm520.42 were
obtained from Eq.~20! for the proposed kernel. The consta
kernel hasl50 andm50. l determines the shape of th
scaling function,s(t), which, according to Eq.~3!, is needed
for calculating the dynamic scaling distribution,F(x).
Hence,l controls the scaling behavior of the cluster-si
distribution. The fact thatF(x) is best defined forl50.22
makes it clear that the system is almost but not pur
diffusion-controlled.

It should be pointed out that also Thorn and Seesselb
detected discrepancies between the Brownian kernel solu
and experimental data for diffusion-limited cluster aggreg
tion @9,27#. They conclude that ‘ ‘ . . . the purely Brownina
kernel has to be modified in such a way that large clus

tal
g

FIG. 9. The Brownian kernel as a function of the cluster sizi
and j.

FIG. 10. The proposed kernel as a function of the cluster sii
and j.
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have a higher collision rate. . . ’’ for improving the kinetic
description of the experimental data. As a possible reason
this effect, they suggest differential settling. The aggrega
kernel proposed in this paper also predicts that larger clus
are more reactive, but it explains this finding by multip
monomer-monomer contacts in the collision area.

VI. CONCLUSIONS

Computer simulations corroborated that the Brown
kernel perfectly models pure diffusion-limited cluster agg
gation. The significant deviations found between experim
tal data and the fitted Brownian kernel solution indicate t
residual cluster-cluster interactions are not completely
sent. This made it necessary to develop an alternative ke
that considers the monomer-monomer sticking probab
explicitly and accounts for the possibility of multipl
monomer-monomer contacts in the cluster collision ar
The numerical solutions for the proposed kernel show
,
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n

excellent agreement with the experimental data, obtainin
scaling exponent ofl50.22. The fact that a kernel that in
cludes some concepts derived from reaction-limited clus
aggregation gives rise to solutions that agree excellently w
the experimental data confirms that the system is almost
not purely diffusion-controlled. This implies that some r
sidual interactions remain in the experimental system,
though it was aggregated at an electrolyte concentration
above the critical coagulation concentration.
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