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Multiple contact kernel for diffusionlike aggregation
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The Brownian kernel is usually assumed to describe pure diffusion-limited cluster-aggregation processes. In
this work, we show that this assumption is correct for simulated data. For experimental data, however, sig-
nificant deviations were observed although the system was aggregated at an electrolyte concentration well
above the critical coagulation concentration. This indicates that residual cluster-cluster interactions are not
completely absent in real experimental systems. In order to improve the description of the experimental data,
we developed a kernel that considers a monomer-monomer sticking probability explicitly and accounts for the
possibility of multiple monomer-monomer contacts in the cluster collision area. The proposed kernel agrees
excellently with the experimental cluster-size distribution and the corresponding scaling function.

PACS numbe(s): 82.70.Dd, 83.70.Hq, 61.43.Hv, 02.60.Cb

[. INTRODUCTION case. In order to improve the theoretical description of the
experimental data, we developed an aggregation kernel that
Diffusion-limited cluster aggregation is understood as ais based on the Brownian kernel and accounts for the effects
regime where the clusters diffuse by pure Brownian motion0f residual cluster-cluster interactions by introducing con-
and once two clusters collide, they always aggrefates]. cepts derived from the reaction-limited cluster-aggregation
This aggregation regime is usually described by the so-callegegime.
Brownian kernel, which is deduced by solving Fick’s equa-  This paper is structured as follows. Section Il is a theo-
tions for freely diffusing spherical particles. The obtainedretical background. The formulation of the proposed kernel
aggregation rates depend on the partide Cross section a,iﬁjpresented in Sec. lll. In Sec. IV, we describe the materials
diffusivity. Fractal concepts are then considered in order t&thd methods used for obtaining the experimental and the
adapt the results obtained for Spherica| partic|es to théimulated data. Section V tackles the results and a discussion
branched structure of real aggregates. It should be pointefiereof by comparing the Brownian and the proposed kernel
out that the diffusion-limited cluster-aggregation regimesolutions with the experimental and the simulated data. Fi-
models the extremely idealized case in which no interactiongally, Sec. VI details the conclusions.
between separated particles exist. This means that interpar-
ticle interactions are allowed only for the bonds between
particles contained within a cluster. In real systems, how-
ever, it is very difficult, if not impossible, to eliminate the  Smoluchowski’s equatiof4,5]
interactions between distant clusters completely. Conse-
quently, the Brownian kernel is not expected to describe real

Il. THEORETICAL BACKGROUND

©

experimental data precisely and at least small deviations dN, 1
from the ideal diffusion-limited behavior should be ob- dt 257, KijNiN;=Nn ;1 KinNi @
served.

In this paper, we first confirm that the Brownian kernel
describes pure diffusion-limited cluster aggregation cor-describes the time evolution of the cluster-size distribution,
rectly. For this sake, computer simulations were carried oulNs(t), arising during aggregation of dilute systems. The
since this is the only way to ensure that no residual interaccluster sizen, is defined as the number of individual par-
tions between clusters are present. Second, we fitted tHigles contained within a cluster amdi,(t) as the number of
Brownian kernel solution to experimental data obtained forclusters of sizen. The aggregation kerned;; , quantifies the
the diffusion-limited cluster aggregation of polystyrene latexrate at which two smaller clusters of siz@nd] react and
particles by means of single cluster light scattering. As exform a cluster of sizé +j. k;j; has to be understood as an
pected, significant deviations between experimental and therientational and configurational average of the exact aggre-
oretical cluster-size distributions were found. Moreover, thegation rate for two clusters colliding under a specific orien-
experimental scaling distribution was not well defined in thistation. All physical information about the aggregation
mechanism is contained in the kernel.
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k(ai)(aj)Na)\kij (A<2) the combined collision cross section and is expressed in
(2)  terms of the sphere radi; andR;.
kij~i“j" (v<1); i<j; \=p+v, The diffusion coefficient of a sphere is given by the

Stokes-Einstein relationship,; = kg T/67 7R, whereR is the
wherea is a positive constant. Kernels with either>2 or  radius of the solid spher&gT is the thermal energy, ang
v>1 are unphysical, since the cluster reactivity cannot risés the solvent viscosity. Substituting this expression in Eq.
faster than its mass. No restrictions are imposeg.on (6) yields

The homogeneity paramet&r correlates the aggregation
rate of two smaller clusters with the.aggrega_tion rate of two K. :E KSM{ R 14+ R L) (R +R), @
bigger ones. FoOn>0, the aggregation rate increases with g ML A ) b
increasing cluster size and decreasesnfar0. Thus,\ con- Smol ] _ ] _
trols the overall time evolution of the aggregation processesvhereky;=8kT/37 is the dimer aggregation rate given by
Forx=<1, a cluster of infinite size is formed at infinite time. Smoluchowski for pure diffusion-limited aggregatipf5].
Only for 1<\=<2 is a gelling behavior observed, i.e., an In order to adapt the Brownian kernel for two colliding
infinite size cluster is formed at finite time. fractal aggregates, an expression for their effective radius

The exponeng controls the shape of the cluster-size dis-and diffusion coefficient had to be found. Computer simula-
tribution. For negative, the big-cluster—small-cluster union tions [10-13 and experimentd 14,15 indicated thatD;
is favored and large variations in cluster mass are discour=KeTi™*W/6m 7R, andR;=Ri ") are suitable assump-
aged. In this case, the cluster-size distribution tends to b#ons for colloidal aggregates. Her, is the monomer ra-
tightly bunched, like a bell-shaped curve. For non-negativedius, d is the fractal dimension, ardj, is the hydrodynamic
w, the union between big clusters is favored and the smalfiractal dimension. Using these expressions in .yields
clusters are left behind, so that the cluster-size distributionfinally
N, , decreases monotonically for increasing cluster size.

For large clusters and long aggregation times, the solu-
tions of Smoluchowski’s equation can be expressed in term
of a time-independent scaling distributioh(x), as[7,8]

kij — %kinol(i(—l/dh)+j(—1/dh))(i(1/df)+j(1/df)). ®)
iccording to Eq.(2), this kernel has

A=1/d;—1/d d =-1/d,. 9
N, (t)~s 9D(n/s), 3) f hoand w N 9)

Aggregation kernels for reaction-limited cluster aggrega-

wherex=n/s(t) can be interpreted as a normalized clusterjon proposed in the literature, generally assume the follow-
size. For nongelling systems, mass conservation reqgires ing form

=2 [8]. The time evolution of the cluster-size distribution is

completely contained in the scaling functias{t), which is kij~(ij)7, (10)

related to the number-average cluster-siag=3]",iN;/ ) _ _

= .N:, by whereo is a constant that lies between 0 and 0.5. This type
= of kernel, however, does not explicitly account for the diffu-

s(t)~ny,~ YN (4) sive motion and the geometrical cross section of the aggre-
gates.
for kernels withu< 0. The functional form ofb(x) depends Broide introduceq the concept of sticking probability and
on the exponents and . [8,9]. proposed the following kernel for slow aggregatidrt]:

For the constant kernek;; =k;;=const, the scaling dis-
tribution, ®(x), is known in a closed analytical form and
given by

kij~ (i (M) 4 j(- M)y py. (11

Here, P;; contains the sticking probability for two colliding
clusters. He considere; to be proportional to the number
of monomers contained within a shell of thickn€sR near
the surface of a cluster. He derived

d(x)=w?e WX (5)

wherew is a constant.

di
B. Aggregation kernels Ai~ GRAR~ i (di = 1)/ds (12)

It is generally accepted that pure diffusion-limited aggre-
gation of dilute systems may be described by the Browniairom the relationshipR; = R,i (*9, valid for fractal struc-

kernel. Its analytical form is given by tures. Physically,Ai represents the number of “surface
sites” available for bonding with other clusters. Assuming
kij=4m(Di+D)(R+Ry). (6)  P;~AiAj, he obtained finally
This kernel was derived by considering two solid spheres kij~(i(_1/dh)-|—j(_1/dh))(ij)(df_l)/df_ (13

that approach due to Brownian motion and form a bond as

soon as they come into physical contact. The first term on théccording to Eq. (2), this kernel hasa=2(d;—1)/d;
right-hand side accounts for the diffusive motion of the —1/d, and u=(d;—1)/d;—1/d,,.

spheres. HereD; and D; are the diffusion coefficients of The kernel given by Eq13) considers explicitly only two
spherei andj, respectively. The second term corresponds tceffects, cluster diffusion and surface reactivity due to a lim-
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ited number of momeric particles contained within the clus-whereM(ij) is an unknown general function ofandj.

ter surface. It neglects the geometric cross section of the M(ij) may be assessed by considering that there is a con-

colliding clusters. tinuous transition away from the diffusion-limited regime to-
For reaction-limited cluster aggregation, the clusters dif-ward the reaction-limited aggregation regime. Consequently,

fuse and collide just as in the diffusion-limited aggregationQ(ij) turns unity for purely diffusion-limited conditions,

regime. However, not every contact results in the formation.e.,

of a bond. When bonds do form, they are, as in the diffusion-

limited aggregation regime, permanent. So, there is no rea- 1=Q(ij ) grown= (i} )~ roM(ij), 17

son for not considering both the diffusive motion and the . ) . )

cross section of the aggregates. In the next section, we pritnereds, is the fractal dimension for a system aggregating

pose a kernel that considers these concepts explicitly. under pure diffusion-limited conditions. Solving fdd(ij)
and substituting the result into EQL6) yields finally
I1l. PROPOSING A KERNEL FOR DIFFUSIONLIKE Q(ij)=(ij )3(df7de)/dfde' (18)

AGGREGATION

The Brownian kernel describes pure diffusion-limited ag_Hence, Eq(14) becomes

gregation as a two-step process, i.e., two clusters first ap-

proach due to diffusive motion before they react and form &;, =—11(i(1/df>+j(lldf))(i(—1/dh)+j(—1/dh))(ij )3(ds—dr)/dedy,
stable bond. Hereby, a physical contact must be established 4

between at least one monomer of each cluster. Since the (19

sticking probability for a single monomer-monomer contact, ‘o 1,Smol ; ;
) . _ - “wherekqq is k . According to Eq.(2), this kernel has
is unity, a stable bond between the clusters is formed inde- 118 K1 Pu gtoEq(2)

pendently of the number of monomer-monomer contacts that N=6(d;—d; )/(dd; )+ 1/d;—1/d,,
may exist in the collision area. P b
For not purely diffusion-controlled aggregation, the clus- _ _ -~
ters diffuse and collide just as in the diffusion-limited re- p=3(di=dsp)/(didy;) — 1/dy. (20

gime. However, not every monomer-monomer contact gives
rise to the formation of a bond. Now it becomes important to IV. MATERIALS AND METHODS

consider the number of monomer-monomer contacts occur- T difs hni loved f btaini
ring in the collision area. This may be achieved by introduc- WO different techniques were employed for obtaining

ing an additional termQ(ij), in the Brownian kernel. Tak- d|ffu3|o_n-I||;r1|'ged aggregauo.n ddata. C())n rt]he ohne Eang' com-
ing into account that the sticking probability for a monomer-PUter simulations were carried out. On the other hand, aggre-
monomer collision,p,;, should also be considered, the gation of polystyrene microspheres was monitored by means

kernel for not purely diffusion-controlled aggregation be- of single-clqster light scattering. Afterv_vards, the obtained
comes data were fitted by the numerical solutions of Smoluchow-

ski’'s rate equation for the Brownian, the constant, and the
1LSmol. s (Uds) 1 (Ud s (—1de) 1 s (—1/d . roposed kernel. The following subsection describes the
kij = kg 7o 100 JEA) (F 1+ € h))Q(”)('M) Eimﬂlation process. The next gubsection details the main
characteristics of the experimental system as well as the op-
O]‘erational principle of the single-cluster light-scattering tech-
nnique. Finally, the numerical procedure to solve Smolu-
chowski's rate equations and the fitting criteria are
summarized.

Here,Q(ij) contains the influence of the average number
monomer-monomer contacts contained within the collisio
region. The producp,,Q(ij) is the sticking probability for
two colliding clusters. Naturally, when purely diffusion-
limited conditions are establishe@,; and Q(ij) become
unity since all contacts between clusters give rise to aggre- A. Simulation

gation and therefore the kernel converts into the Brownian The simulations were carried out by placing randoiXly

kernel. identical particles inside a three-dimensional square box. The

In order to obtain an analytical expression for @€ij)  only imposed restriction was to avoid particle overlapping.
term, we assume that it should be proportional to the numberhe movement of the different aggregates was carried out in
of monomers per unit area contained within a shell of thick-the following way.

nessAR near the surface of each colliding cluster. Consid- (i) The monomeric particles are always moved a fixed
ering the fractal structure of the clusters, this number is givenjistancel , in a random direction.

by (i) Thei size clustersi¢>1) are moved the same distance
Iy in a random direction when a generated random nurgber

. di > (di—3)/d uniformly distributed in[0,1] is less than the ratio between
Aifarea- ﬁAR/R ~ iR (15 the diffusion coefficients of thé size clusterD;, and the
monomerD,,, i.e. for §<D;/D,.
Hence,Q(ij) may be expressed as (i) The ratio D;/D, is calculated assuming thdd;
~i~ Yt and so,D;/D,,=i .
Q(ij)=(Ailarea(Aj/areaM (ij)=(ij) = MMm(ij), (iv) The time step is calculated &s13/6D, whereD,,

(16)  =kgT/6m R, is the Stokes Einstein translational diffusion
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coefficient for a monomer. Herey is the solvent viscosity, C. Solving Smoluchowski’s rate equation
kgT is the thermal energy anBy, is the monomer radius  The method described in RgR0] was used for solving
[17]. Smoluchowski’s rate equation. It is based on a second-order

A collision is considered to occur when a moved clusterRunge-Kutta algorithm that solves a limited number of
overlaps with another one. Since diffusion-limited cluster agcoupled first-order differential equations for a given kernel
gregation is simulated, every collision leads to the formatiorand initial size distribution. The influence of larger clusters is
of a stable bond. The position of the moved cluster is corneglected during the first iteration run. For the following
rected backwards in the direction of the movement so thasteps, their influence is considered by introducing dynamic
only the cluster surfaces remain connected. The new clusteicaling concepts. This method presents not only a high de-
continues the movement in the next step. The simulations amgree of precision but is also a fast way to obtain the time
off-lattice. Periodic boundary conditions are considered.  evolution of the cluster-size distribution numerically. The

experimental data were fitted by minimizing &function

B. Experiment defined as
The experimental cluster-size distributions were obtained 117 I
from aqueous suspensions of polystyrene microspheres that s=\—| > 3 £+3> & (21)
. . : - JI : ni |’
were aggregated at high electrolyte concentration. The poly- 21| j=1i=1 i=1 "

styrene particles were manufactured at the laboratories of
Granada University. Transmission electron microscopywhere§;; is the relative deviation between the experimental
(TEM) was used to check the particle size and shape. Thpointi of curvej and the corresponding numerical solution.
obtained average particle diameter and polydispersity indegﬁni is defined accordingly for the time evolution of the
were (638-4) nm and 1.004, respectively. Sulfate groupsnumber-average cluster size,. | is the total number of
derived from the initiator molecules for the polymerization experimental points and is the total number of curvest
reaction stabilize the particles by charge. The particle surfacexpresses the square root of the mean quadratic relative de-
charge density was determined by conductimetric titrationviation. Please note that the number-average cluster-size
obtaining (—54+2) mC/nf. The critical coagulation con- curve is included in the function and weighted times in
centration of (186:7) mM was measured by small-angle order to consider also the contribution of larger aggregates.
nephelometry. In order to simplify the fitting procedure, the following
The single-cluster light-scattering instrument used for thisassumptions were adopted.
study is basically a counter and classifier of clusters. It al- (i) Since computer simulations as well as experimental
lows the cluster-size distribution up to heptamers and thevidence indicate that the fractal dimensidp, and the hy-
total concentration of clusters to be measured during a redrodynamic fractal dimensiom,,, are approximately equal,
duced time interval. So, the time evolution of the cluster-sized; andd,, were considered to be identidd1,22].
distribution and the number-average cluster sizg, can be (i) The fractal dimensiond;_, for pure diffusion-limited
obtained by measuring at different stages of the aggregatiofggregation is assumed to be (1x7%05). As will be dis-
process. Its principle of operation is based on hydrodynamigussed later, this value is widely accepted in the literature but
focusing of the aggregating sample so that the clusters arig in no way a general resyii1,13,23,2%
forced to flow one by one across a focused laser beam. As Thjs leaves onlyk,;; andd; as fitting parameters for both
they pass, they scatter a pulse of light that is detected ahe Brownian and the proposed kerrske Egs.(8) and
small scattering angle. Under these conditions, the light19)]. For the computer-generated cluster-size distribution,
pulse intensity is directly related to the cluster size and therenowever, interparticle interactions are completely absent and

fore the cluster-size distribution can be obtained by simplthereforek,; must bek$"'. Consequently, onlg; is left as
counting the pulses as a function of their intensity. Further free fitting parameter for the simulated data.

details of the experimental technique can be found elsewhere
[18,19.
Prior to the experiments, the samples were diluted to V. RESULTS AND DISCUSSION
twice the desired particle concentration and sonicated for 10 |n this section, the numerical algorithm for solving

min in order to approach monomeric initial conditions. Im- smojuchowski's rate equation will be used to fit the obtained
mediately afterwards, the coagulation process was started kimuylated and experimental data. It will be shown that the
mixing equal volumes of sample and electrolyte solutiongrownian kernel is in excellent agreement with the simulated
with a Y-shaped mixing cell. The initial particle concentra- gjffysjon-limited aggregation data but it is not capable of
tion was set to 8810 m~2 in order to guarantee the fitting the experimental data satisfactorily. Afterwards, the
proper detection of individual aggregates. The electrolytgyroposed kernel is fitted to the experimental data and a full

concentration was 1.0 M potassium brom{#@r). The tem-  comparison with the numerical solutions for different aggre-
perature was stabilized at (211) °C. Pure water was ob- gation kernels is made.

tained by reverse osmosis followed by percolation through
charcoal and a mixed bed of ion-exchange resins. The initial
cluster-size distribution was measured for a stable,
electrolyte-free sample. The fraction of particles associated In order to obtain reliable statistics, the simulations were
in doublets was less than 0.3% in the initial suspensioncarried out with an initial numbeNy=30000 monomeric

Larger aggregates were not detected. particles. The ratio between the total particle volume and the

A. Simulation
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FIG. 1. Time evolution of the cluster concentrations represented imulated d . i distributi ;
in a double-logarithmic scale. The points correspond to the FIG. 2. Slmuzate ynarrtllc scaling Istri ut(;oﬂ;(ﬁ), _orl d
computer-simulated data for monomers up to 200-mers grouped ijonomers up to 00-mers. The points correspond to the simulate

logarithmically spaced intervals as indicated in the plot. The solidgat_a' Tfhe ShOI'% line §hovl\(/s thel numerically obtained scaling distri-
lines represent the fitted numerical solution for the Brownian ker- ution for the Brownian kernel.

nel.
behavior was already reported in the literat(ii8,26. As

box volume was %10 *. A simulation step length of,  expected, both the numerical and the simulated dynamic

=0.4 times the particle radius was established. In order t&caling distributions show a bell-shaped form that peaks at

calculate the simulation time step, the monomer diameteapproximatelyx=0.1. This is in good agreement with the

was chosen as 630 nm, just as for the experiments. For thesults obtained by Broide and Cohg®] and Thorn and

same sake, the solvent viscosity and the thermal energy wefseesselberf7].

evaluated at 21°C. The cluster-size distribution, obtained

under these conditions, is plotted in Fig. 1 in a double- B. Experimental data

logarithmic scale. As can be observed, the monomer number

decreases monotonously since the individual particles disap: In order to obtain experimental data for diffusion-limited

: lloidal aggregation, a freshly prepared particle suspension
pear as they react and form bigger aggregates. The curves o7 . i
all larger aggregates exhibit a maximum as they must first be/as aggregated at 1.0 M potassium bror(ir). The elec

formed before they can react. For long aggregation times, th‘?erolyte concentration was chosen well above the critical co-

. algulation concentration so that the sample can safely be as-
curves for smaller aggregates cross the curves for the blggeszumed to agaregate in the fastest possible agaregation
ones. This behavior is typical for diffusion-limited aggrega- ggreg P ggreg

tion. The solid lines in Fig. 1 correspond to the fitted numeri—regl':rima're 3 shows the time evolution of the cluster-size dis-
cal solution for the Brownian kernel. The fitting procedure,[ributgilon for monomers uo to heptamers in a double-
was performed by considering 16 curvels{16) and a total P P

. .. logarithmic scale. As for the simulations, the monomer con-
number of 235 data points per curve=235). The best fit . !
was obtained fod, = (1.73+0.09). The fitting error was es- centration decreases monotonously while the curves for all

. X X X larger aggregates exhibit a maximum. For longer times, the
0, - .
timated assuming a 5% confidence interval for théunc monomer curve also seems to cross the curves of the bigger

tion. As can be seen, the agreement between the simulat . : . :
data and the given solutions for the Brownian kernel is ex%%gregates. The experimentally obtained time evolution of

the number-average cluster sing,, is plotted in Fig. 4 in a

cellent. o
double-logarithmic scale.

In order to corroborate the fitted value for the cluster frac-
tal dimension, we calculated this parameter also from the
structure of the simulated clusters by the radius of gyration
method described in Ref[25]. The obtained valuegd; We first fitted the Brownian kernel solution for a cluster
=(1.72+0.03), is in good agreement with the fractal dimen-fractal dimension ofd;=1.75. Figure 5 shows the square
sion calculated from the kinetic data and with those reportedoot of the mean quadratic relative deviatian,defined by
in the literature. Eq. (21), as a function of the fitting parametky;. The cal-

Figure 2 shows the dynamic scaling distributieh(x),  culations were performed for aggregates up to heptamers
calculated for monomers up to 200-mers. The data point§J=7) and a total number of 67 data points per curve (
correspond to the simulated data. The solid lines represent 67). As can be seen, a well-defined minimum is reached
the numerical solution obtained for the Brownian kernel. Itfor kf;**"=(7.0-0.3) 10 '® m®s 1. The corresponding
can clearly be seen that the simulated data points define rmumerically calculated cluster-size distribution is plotted to-
single master curve that is well described by the numericafjether with the experimental data in FigaB A relatively
solution. It should be pointed out that even the smaller clusgood agreement between the fitted curves and the experi-
ters exhibit dynamic scaling behavior at relatively shortmental data is observed. The experimental data for the mo-
times. This is quite surprising since the scaling theory isnomeric particles, however, differ quite significantly from
strictly valid only for large clusters at long times. A similar the fitted solution. Furthermore, a slight positive deviation

1. Fitting the Brownian kernel
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100
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:? =
O
1
01 L | T AL | T M L |
100 1000 10000
(a) time (s)
1005 FIG. 4. Time evolution of the number-average cluster sige,
3 The solid line represents the fitted numerical solution for the pro-
s . posed kernel. The dashed and the dotted lines correspond to the
- e, fitted numerical solutions for the Brownian and the constant kernel,
i 10+ oo, respectively.
© 3 ¥ e . . L
- fractal dimensiond; . The main difference between both so-
Q 5 i3 lutions is that the crossing of the different cluster-size curves
1 SRR is only observed for the Brownian kernel solutions. The dis-
° X crepancies between the obtainkg values can be under-
/ stood in terms of the kernel shageee Ref[20]). Notwith-
standing, both values agree with the average dimer formation
0.1+ ————ry — rate,(k;1)=(6+3)x 10 *® m*s™!, determined by Sonntag
1000 10000 T :
_ and Strenge for diffusion-limited cluster aggregatif3].
(b) time (s) Their value was calculated by compiling a large set of ex-

perimental measurements. It should be pointed out that the
experimental values obtained fly; under diffusion-limited

. ... conditions are substantially smaller than the theoretical von
amers, and X) heptamers represented in a double-logarithmic

: Smol_ ~18 31 o
scale. The solid lines ita) and (b) represent the fitted numerical Smoluchowski valueky; 7=11.1x 10 m°s”* for 21°C.

solutions for the Brownian kernel havirg=1.75 and the constant This_dis_crepan_cy is gen_erally gxplained in terms of hydro‘?'y'
kernel, respectively. namic interactions, which typically reduce the aggregation

rate by a factor of 228—30.

can also be perceived for the larger cluster sizes. The dashed Figure 6 shows the dynamic scaling distributich(x),
line in Fig. 4 shows the numerically calculated time evolu-calculated for monomers up to heptamers. The points show
tion of the number-average cluster size. Here, it can be obthe experimental data. The solid line corresponds to the nu-
served that the numerical solution is unable to fit either thenerical solution obtained for the Brownian kernel having
short- or the long-time behavior of the experimental data
correctly. 0.8-

In order to improve the fit, we varied also the cluster
fractal dimensiond;. We found, however, that the differ-
ences between the fitted and the experimental curves dimin-
ish slightly for increasingl; so that the best fit would have
been obtained only for the limiting case @f— . Although 4l
fractal dimensions higher than the dimension of space are
nonphysical, it is interesting to discuss this pathological case
in more detail since the Brownian kernel converts into the 0.2+
constant kernel ad; tends to infinity. For this purpose, Fig.
5 shows also the square root of the mean quadratic relative

FIG. 3. Time evolution of the concentration dflj monomers,
(O) dimers, ) trimers, (V) tetramers, ) pentamers, {) hex-

0.6

.. 0.0
deviation é for the constant kernel. As can be seen, the 1 2 3 4 5 6 7 8 9 10 11
function reaches a deeper minimum than in the case of the k(10" m’sh)
Brownian kernel withd;=1.75. Now, the best fit for the !
dimer formation rate constant becomk§" (8.0+0.3) FIG. 5. Square root of the mean quadratic relative deviaion,

X108 m®s . Nevertheless, the corresponding numericalas a function of the fitting parametéds,; . The symbols ©), (0J),
solutions are not very different from the previous e and (A) represent the data for the Brownian kernel havihg
Figs. 3 and 4 This makes it clear that the Brownian kernel =1.75, the constant, and the proposed kernel, respectively. The
solutions are almost unaffected by variations in the clustecontinuous lines are drawn as a guide to the eye.
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1000 5 100
100 4 o?E 10
] o
2 O
10-: 1
14 0.14-4 —
0.01 1000 10000
(a) time (s)
1000 5
FIG. 7. Time evolution of the concentration dfl) monomers,
(O) dimers, ) trimers, (V) tetramers, ) pentamers,{) hex-
amers, and X) heptamers represented in a double-logarithmic
1004 scale. The solid lines represent the fitted numeric solutions for the
proposed kernel.
)
_,9 kernel. This means that the proposed kernel fits the experi-
10 mental data significantly better. This can clearly be seen in
Figs. 4 and 7, which show that the calculated time evolution
of the cluster-size distribution and the number-average clus-
14 ter size for this kernel are in excellent agreement with the
0.01 experimental data. In this case, no significant deviations are

(0) X observed.
_ _ o It should be pointed out that the physical interpretation of
FIG. 6. Dynamic scaling dlStflbl{tlon@(X), calculated for the fitted value for the fractal dimensiod;=(1.87+0.03),
monomers up to heptamers. The points correspond to the expelig not straightforward. First of all, the given error is deter-
mental data. The solid lines correspond to the numerically obtaine%ined only as a fitting confidence interval. The proposed
scaling distribution calculated for the Brownian kernel havihg kernel depends. however. critically on the. differenah (
=1.75(a) and the constant kernéb). P ! ! y
—de) and so the experimental error dffD must also be

d;=1.75[Fig. 6@] and the constant kernfFig. 6b)]. For considered. Taking into account that tdteD values found in
large argumentsy, the experimental data points define athe literature vary usually from 1.7 to 1.8, a better estimation
single master curve, which is well described by the numeri-of d; would bed;=(1.87=0.09). On the other hand, it is
cally obtained dynamic scaling distribution. For small argu-necessary to keep in mind that the fitted value was ob-
ments,x, the experimental data scatter in a cloud. Also intained from kinetic data and not directly from structural mea-
this region, the numerically calculated scaling distributionssurements, and therefore implicit assumptions such as the
fit the experimental data quite well. As expected, the moapsence of internal cluster rearrangement or multifractality
notonously decreasing shape of the numerically obtainedere made. When these effects are present, fractal dimen-
scaling function,®(x), for the constant kernel is perfectly gjons even as high as 2.4 are reported for diffusion-limited
described by the theoretical expressi@n This is why the  ,04regation processg26]. This makes it clear that the pre-
corresponding curve is not included in FigbB The numeri- g0 fitting procedure should not be considered as a new
cally obtained dynamic scaling qllstnbutmn for the Brownian independent way to determine the fractal dimension.
kernel, however, shows the typical bell-shaped form. The dynamic scaling distributionb (), for the proposed
kernel is shown in Fig. 8. As for the constant and Brownian
kernels, monomers up to heptamers were taken into account.
As in the case of the constant and the Brownian kernelAn excellent experimental scaling behavior for the complete
the square root of the mean quadratic relative deviatiyn, measuring interval is observed. The experimental data points
was minimized for fitting the proposed kernel given by Eq.line up on the fitted curve almost perfectly. This means that
(19). The best fit was obtained foki;®=(5.6-0.2) the experimental data scale much better for the proposed
X101 m¥s ! andd;=(1.87+0.03). Figure 5 shows the kernel. As in the case of the Brownian kernel, the numeri-
corresponding’ values as a function of the fitting parameter cally obtained dynamic scaling distribution is bell-shaped. It
kq1. The fittedk,, value is also in good agreement with the peaks, however, at approximatety0.03. The agreement
average value determined by Sonntag and Strenge. THmetween the numerical and the experimental scaling distribu-
S-function minimum is, however, substantially deeper thantion is excellent. As in the other cases, the numerical solu-
the corresponding minima for the constant and the Browniatiions scale already during early stages of aggregation.

2. Fitting the proposed kernel
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FIG. 8. Dynamic scaling distributiorb (x), obtained for mono- ] ) 3
mers up to heptamers. The points correspond to the experimental F_IG. 9. The Brownian kernel as a function of the cluster size
data. The solid line corresponds to the numerically obtained scaling"dl-
distribution for the proposed kernel.

proposed kernel is smaller than for the Brownian kernel. For

C. Discussion this reason, the solution for the proposed kernel yields a

. - slower monomer reaction rate keeping similar values for big-
The Brownian kernel was employed for fitting aggrega-ge, oqqreqates. Similar arguments are valid for the compari-

tion data simulated in the absence of any interactions bez;, of the constant kernel with the Brownian kerf29)].
tween distant clusters. Since an excellent agreement between |, o result section. it was also shown that the experi-

the simulated data and the numerical solutions was Obtainegnentally obtained dynamic scaling distribution is best de-

the Brownian kernel can safely be assumed to be an excellefqo for the proposed kernel. This is a consequence of the
model for pure diffusion-limited cluster aggregation. This yitterent \ values for the corresponding kemels. For the

suggested, however, that the Brownian kernel may not b%rownian kernel, Eq(9) yields A =0 and = —0.57. Con-

capable of describing real diffusion-limited aggregation dat%idering the fittedd, value, \=0.22 andu=—0.42 were

where the effects of residual interactions between clusterabtained from Eq(20) for the proposed kernel. The constant
may have to be considered. We confirmed this assumptio '

b ing the B o K | soluti ith . Rernel hasn =0 and ©=0. N\ determines the shape of the
y comparing theé brownian kernet sofution wi experlmen-sca"ng functions(t), which, according to Eq.3), is needed

tal data obtained for aqueous suspensions of polystyrene PaL, calculating the dynamic scaling distributiorib(x).

ticles ag_grggatmg at high electrolyte concentrz_itlon. S'gn.'f"Hence,)\ controls the scaling behavior of the cluster-size
cant deviations were observed not only for the time evolution

) o distribution. The fact thatb(x) is best defined foh=0.22
of the cluster-size distribution but also for the number- . .

. makes it clear that the system is almost but not purely
average cluster size.

) .. diffusion-controlled.
So, an alternatlvg k?”‘e' had to _be proposed that_e_x_pllcnly It should be pointed out that also Thorn and Seesselberg
accounts for the sticking probability and the possibility of detected discrepancies between the Brownian kernel solution

multiple monomer-monomer contacts in the cluster collision . e
. . . nd experimental data for diffusion-limited cluster aggrega-
area. The improvement with respect to the Brownian and. o .
ion [9,27]. They conclude that ** . .. the purely Browninan

constant kernel solutions were clearly shown not only by thq{ e
) ernel has to be modified in such a way that large clusters
excellent agreement between the experimental and numeri-

cally calculated cluster-size distribution, but also by the bet-
ter defined experimental scaling functioi,(x). Further- /\
more, the deeper minimum obtained for tl# function 30 _] Al i
confirmed the improvement. ‘

For the fitted monomer reaction rate constants, we ob-
tained kP PP< k"< k9" This finding may be understood
by comparing the shape of the corresponding kernel. Figure
9 shows the Brownian kernel as a function of the cluster size
in a three-dimensional plot. As can be seen, the main diago-
nal has slope zero, which means that the corresponding ma-
trix elementsk;_;, are constant. Moreover, all matrix ele-
ments not too far from the main diagonal are also almost 0 L
constant. Only the matrix elements close to the axes have 20
significantly higher values. Figure 10 shows the proposed
kernel in a similar plot. Although the shape of this kernel is / 80 20 \
not very different from the shape of the Brownian kernel, it
exhibits a main diagonal with a positive slope that is larger FIG. 10. The proposed kernel as a function of the clusterisize
for small cluster sizes. Consequently, the r&tig/k,, for the  andj.

100
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have a higher collision rate. . ” for improving the kinetic  excellent agreement with the experimental data, obtaining a
description of the experimental data. As a possible reason facaling exponent ok =0.22. The fact that a kernel that in-

this effect, they suggest differential settling. The aggregatiortiudes some concepts derived from reaction-limited cluster
kernel proposed in this paper also predicts that larger clustemggregation gives rise to solutions that agree excellently with
are more reactive, but it explains this finding by multiple the experimental data confirms that the system is almost but

monomer-monomer contacts in the collision area. not purely diffusion-controlled. This implies that some re-
sidual interactions remain in the experimental system, al-
VI. CONCLUSIONS though it was aggregated at an electrolyte concentration well

i ) _above the critical coagulation concentration.
Computer simulations corroborated that the Brownian

kernel perfectly models pure diffusion-limited cluster aggre-

gation. The significant deviations found between experimen- ACKNOWLEDGMENTS
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